All posts by Steve Shurtleff

What goes up…

The Apollo 16 Command Module descends under canopy

The Apollo 16 Command Module descends under canopy

Ever heard of Louis-Sébastien Lenormand?

What if I told you that manned spaceflight could never have happened without him, and unmanned flights would all be one-way trips?

In the late 1700’s, he invented and tested the world’s first modern parachute, a concept originally proposed by none other than Leonardo da Vinci.

Without parachutes, no spacecraft could ever be recovered intact, and no astronauts would survive a return to earth.

So how does it work?

When a rocket or capsule is descending after completing the mission, at least one parachute is deployed to slow the craft to the point at which impacting the ground (or water, in the case of manned capsules) will not destroy the craft.

Basically, once the parachute, also called a canopy, opens, it creates a force called “drag”, meaning that it resists the movement of air as the craft moves downward. The larger the parachute, the more drag is created.

So what would happen without a parachute?

An object falling from space without a parachute would reach what is known as “Terminal Velocity”, meaning that it is moving as fast as it can go through the air.

For a falling person, that would mean hitting the ground at about 120 MPH, but depending on their position it could be much faster.

In other words, it would not be the best day ever, but for the craft or astronaut, it would likely be the last.

Think about it. Modern spaceflight depends heavily on an invention that came to be hundreds of years before the first launch was ever even planned.

I wonder if either da Vinci or Lenormand had any idea how much of an impact their visions would have on the world.

So what visions do you have for the future?

Dream.

Top

Opportunity abounds!

opportunityWhen we say that there’s Opportunity for exploring Mars, we’re more correct than we know.

One of a set of twin Mars rovers, the other being Spirit (which stopped transmitting in 2010 after becoming stuck in 2009), Opportunity has been in continuous operation since January 25th, 2004. Originally intended only to operate for 90 Martian days, or Sols, Oppprtunity has now been gathering data for 3,240 Sols, 36 times longer than expected.

While Opportunity has proven to have an impressive lifespan, it was not built for speed. On average, it travels just under 1/2″ per second. Since touchdown 9 years ago, it has ventured a little over 22 miles.

Designed to collect a variety of geological data, Opportunity is equipped with a wide assortment of instruments, tools, and cameras.

Though it’s still going strong, Opportunity won’t be the last probe to explore Mars. Plans are underway for further missions to investigate the possibility that Mars once supported life.

As those new endeavours grow near, more scientists, technicians, and engineers will be called upon to assist in the efforts.

Maybe you can be one of them.

Dream.

Top

Fuel for thought

Diagram of a RocketDyne F-1 Engine

Diagram of a RocketDyne F-1 Engine

We’ve looked at exactly what happens in the last moments leading up to a rocket launch, but what about how it flies off the pad?

Well, the “how” depends on the specific rocket in question.

Rocket engines currently fall into 2 basic types: Solid Fuel and Liquid Fuel.

A Solid Fuel engine can be started only once, but it’s very simple and reliable, and is tremendously powerful. Engines like this are usually employed to get the rocket off the pad initially.

In contrast, a Liquid Fuel rocket is more complex, but can be stopped and started as often as needed providing there is still fuel in the tanks, much like the engine in your car, but far more powerful.

So which one should you use on a rocket if you were to build one?

This also depends on the rocket. Most model rockets use Solid Fuel engines that exist as a single unit and can be replaced for each launch. Remember, though, that engines like the ones you can buy in a store aren’t designed to be very powerful.

For example, if the engine you have onhand is intended to lift 6 ounces or less, including the weight of the engine itself, it wouldn’t even get an astronaut’s lunch off the ground, let alone something like a Saturn V rocket, which was used to propel the Apollo missions into orbit and on to the Moon.

What kind of engine was used for that?

A company called RocketDyne produced a Liquid Fuel engine called the F-1 for the Saturn V launches, each of which used 5 of these engines which, when working together, produced 7,500,000 lbs. of thrust, which made the Saturn V the most powerful rocket ever made. These engines are so large that each of them burns over 3,300 gallons of fuel every second!

So we’ve gotten a glimpse of the smallest and the largest engines, and there is huge array of selection in between the two.

A 3rd type, a Nuclear Fuel Engine, is currently being researched for use on future missions.

Rockets as we know them now have been around for many decades, but do you think it’s still the best way to launch a rocket?

What ideas do you have to get a vehicle into orbit?

There’s a lot of room for new concepts.

Dream.

Top

A piece of the action

snoopySo now that you’ve sent your photo into space and gotten hooked on space collectibles, where do you go from here?

Well, you could always send more photos, of course, but what if you want to go beyond that?

Then you’re in luck.

All manner of collectibles are available, what you can get mostly depends on how much you want to spend. For example, you can get a 3″ NASA patch for $2.99. Just about anyone could afford that. And the NASA “meatball” is only one of many patches available. In fact, you can get them from as far back as the Mercury Program.

But suppose that’s just not flashy or grand enough.

No problem!

How about an autographed photo of Buzz Aldrin standing on the Moon? Sure, you can have one for $1200.00.

Ok, too much? That’s fine.

A model of the Apollo 11 Command Module or the Mercury Friendship 7 capsule could grace your desk for under $200.00.

Now, you may have noticed that so far only the US Space Program has been mentioned, but you’re not limited to that. You can collect memorabilia from the Soviet space efforts as well.

Where, you ask?

There are many sites on which you can make purchases, but the two I concentrated on for this blog are:

http://www.thespaceshop.com

and

http://www.ussr-airspace.com

However, and this is important, please bear in mind that Photos to Space does not make any sort of endorsement of either of the two sites, the addresses are provided for your information.

So what grabs your eye? What would look great on your wall, or your desk, or your favorite jacket?

Dream!

Top

The tribulations of progress

Flight_lunarIt was in December 1903 that the Wright Brothers carried out the first powered flight. It was only 66 years later that the first human set foot on the Moon.

That’s a lot of progress in a short amount of time, isn’t it?

Many of us enjoyed watching as science provided the research and development of the technologies needed to leave Earth, but not everyone was willing to accept the advancement.

A small group of people, primarily influenced by a radical religious group called the Flat Earth Society, accused NASA of staging the entire Apollo Program and faking the Lunar landings on a soundstage, claiming that photos contained inconsistencies, that the radiation encountered during the flight would have been fatal to humans, and that some of the data from the flights are missing.

Naturally, these claims are false, as equipment left on the Moon is visible through telescopes, and a series of laser reflectors left by both the American Apollo missions and Soviet unmanned probes prove that we have indeed been to the Moon.

Ironically, in the late 1960’s, while the technology existed to reach the Moon and return, we did not have the ability to falsify the footage of the Apollo landings. Filmmaking techniques at the time were simply not advanced enough to recreate the conditions on the Lunar surface.

Though not much effort is needed to refute the claims, scientists on the Discovery cable channel show Mythbusters once collaborated with NASA and dedicated an entire episode to addressing the accusations, duplicating as closely as possible the conditions on the Moon, and successfully refuting several of the claims made by the conspiracists.

In short, yes, we did indeed go to the Moon. I’d like to think that someone will return someday.

Maybe you will be that person.

Dream.

Top

From the ground up

imagesCAB6OK7FWe know, of course, about the large number of satellites overhead, including the International Space Station. Their presence has become almost a matter of second nature.

But how exactly did they get up there? What occurs to get them from the ground to orbit?

Let’s look at the most crucial 9 minutes in the life of a satellite, using the Space Shuttle as an example.

T-9:00 minutes – Strangely enough, the 9th minute before a launch actually lasts about 45 minutes. During this pause, flight controllers examine their data and give their ok for the launch to proceed.

T-7:30 – The countdown resumes and the walkway that astronauts and technicians use to enter the Shuttle is pulled away. If there is an emergency, the walkway can be moved back into position in as little as 15 seconds.

T-5:00 – If everything is going the way it should, the Shuttle Commander turns on the 3 generators, called APUs (for Auxiliary Power Units), which provide power to the Shuttle’s hydraulic systems.

T-2:00 – Members of the crew close the visors on their helmets.

T-0:31 – Countdown control is transferred from Mission Control to the Shuttle’s computers.

T-0:16 – Very large tanks are prepared to release water onto the base of the launch pad to absorb the vibration and shockwaves that the engines create during liftoff.

T-0:06 – The water from the tanks attached to the launch pad begins to flow and the Shuttle’s 3 Main Engines are ignited. Each of these engines produce 418,000 lbs of thrust at liftoff. That’s so powerful that when the Shuttle clears the top of the Launch Tower, it’s already going about 75 MPH. For comparison, that’s faster acceleration than most drag racing cars.

T-0:00 – At the moment of liftoff, the Solid Rocket Boosters attached to the sides of the external fuel tank are ignited. At the same instant, the large bolts that hold the Shuttle in place are released with explosives and the ascent begins!

Now that the Space Shuttle has been retired, new rockets are constantly begin developed to perform tasks like satellite placement and Space Station resupply flights.

Remember, the end of one thing is always the start of another, and there are lots of opportunities coming up for everyone.

Dream.

Top

R2D, Too

breadspaceWhat do we do when there is a task to perform in a place where humans can’t go?

We send a robot.

A robot is simply a device, usually controlled by a computer, that performs a specific task, usually mundane, repetitive, or hazardous. Chances are that there are robots in your home right now. An automatic bread maker is a good example.

Perhaps 2 of the best known and complex robots in use today are called Curiosity and Opportunity, robotic probes exploring the surface of Mars.

One of the aspects of automation that generates a large amount of confusion is the difference between a robot and an android. Simply put, an Android is a type of robot designed to mimic human appearance and behavior.

All androids are robots, not all robots are androids.

As private space ventures progress, the need for robots, and probably androids also, will continue to grow and need research, development, design, and engineering.

This too could be your future.

Dream.

Top

Cats have nothing to worry about

CuriosityIt’s very common when someone is writing about space, especially when relating distances, that cars and driving are used as points of reference. There is more than one example of this in my own blogs, when explaining things like the distance to Proxima Centauri.

It’s fitting then that Curiosity, the Mars exploration rover, is roughly the size of a car.

Launched in November 2011, Curiosity touched down on the surface of Mars in August 2012. The calculations for the flight were so precise that after flying 350,000,000 miles, Curiosity touched down only 1.5 miles from the center of the intended landing area.

Curiosity has several tasks to perform during its mission, which currently has no definite end date. As it moves across the Martian landscape, it will record data about geology and climate, the presence of water and the possibility of microscopic life, and the potential for human habitats on future missions, to name a few.

Equipped with a large number of tools and imaging arrays, Curiosity is not likely to run out of things to do.

Despite its versatility, though, Curiosity, is not the only probe slated to investigate Mars. Opportunity, another rover, was already gathering information when Curiosity began its mission.

There will be more still, as another mission is planned for 2020 and some private firms are starting to plan for manned ventures.

Could you be a part of them?

Dream.

Top

The Write Stuff: A Blog Contest!

penkeyboardThe Universe has been around for a little under 14 billions years now, and the Earth came to be about 4.5 billion years back.

Therefore neither will suffer or even notice if we step back for a moment and take a look at something else.

Since you’re reading this now, it’s likely you’ve read some of the other blog posts I’ve put here.

So how exactly do they come to be?

I’m glad I asked, and I’m happy to share the answer.

First, and this is by far the most difficult part, there has to be a topic. I am absolutely horrible at finding these, even within a given range of subjects. Fortunately, Joe isn’t.

From there, I take over. The next step is to pick a direction. Without that, a typical entry would probably be a long string of meandering gibberish.

Moving on, there’s the planning and rough outline, which occur entirely in thought. This is not as hard as it sounds, and is the stage at which the key points are established. Some of the wording also starts to occur here.

After that? It depends. If typing, step away from the keyboard. If using paper, put the pen down. Take 5-10 minutes to pick out some music or put in your favorite dvd – don’t play it too loudly – and get something to drink (I often go with tea). Then breathe for a moment.

Now it’s back to the desk, beverage in hand, to begin the writing. This is the actual placement of words – the fun part. There’s a lot to consider here, as a good amount of information needs to be presented in a short space. Most of the blogs here are intended to take less than one minute to read, yet still make sense to anyone and hopefully inspire everyone.

So how do I know when to stop? Simple. I let the entry itself decide. When it does, the whole thing gets polished up and a fitting graphic or picture is picked out to go inside it. Conveniently enough, this is also about the time the cd/dvd is done and the teacup is empty.

This is when I save and send it off for Joe and Tracey to review it. This is also when any recommended changes get looked at and made, if necessary, and the publishing date and time are programmed in.

The whole process, from beginning to end, usually takes up between 1 and 3 hours.

So why not give it a try?

Pick out a topic you enjoy. You might be surprised what happens when you let your hands express what your mind thinks.

In fact, I’m so sure that you can come up with something great that I’m going to make a contest out of it. Take a shot at writing a space-related blog entry yourself, email it to me at sshurtleff@photostospace.com by April 1st, 2013, and the winner will have their writing published on the site as one of our tri-weekly blog entries.

Write.

Top

Any side of the Moon

Thanks to Jesse Ward for the amazing graphic!

Thanks to Jesse Ward for the amazing graphic!

We see it almost every night. We look up at it so often, in fact, that many of us don’t even notice it any more, yet it was the focus of one of the most amazing ventures of the 20th century.

As of now, the Moon has only been reached by craft under the control of government agencies, and the folks at the X-Prize Foundation seem to think that needs to change. And they’re right.

In 2007, sponsored by Google, they announced the inception of the Google Lunar X-Prize, a competition for private space firms to:

1. Land a robot safely on the Moon,
2. Have the robot travel 500 meters (1,640 ft.) across the surface, and
3. Transmit HD pictures and video back to Earth.

$30,000,000 has been allocated to winners of the competition, with $20,000,000 going to the first firm to accomplish the goal and $5,000,000 going to the 2nd team to do so. The remaining $5,000,000 is reserved for the achievement of other tasks, such as capturing images of Apollo mission landing sites or capturing video from the dark side.

Competing teams also have a deadline of December 31st, 2015 to complete the necessary steps. Originally there were 34 companies developing craft to make the attempt, though 8 have now withdrawn, leaving 26 firms from various nations still in the running.

With some of the teams having already completed successful test flights, the prize grows closer and closer to being claimed with each passing day.

Remember that, this being the first such attempt, there will be more to come.

Where will you fit in to that vision?

Dream.

For more information, be sure to visit www.xprize.org and www.googlelunarxprize.org

Top
1 5 6 7 8 9 Page 7 of 9